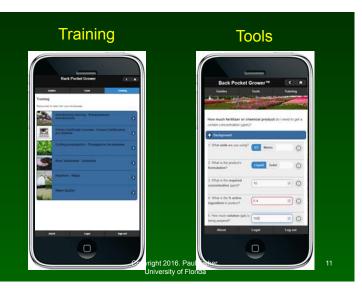


Copyright 2016.

Substrate-pH affects micronutrient Before we get too far... solubility and plant health pH management is not that complex Maintain substrate-pH around 5.5-6.4, and you will be fine. But this is an advanced session. For more info... Impatiens 6.0 4.4 4.7 5.1 Substrate-pH Copyright 2016. Paul Fisher, University of Florida Copyright 2016. Paul Fisher, University of Florida

Greenhouse Training Online courses

- Designed for greenhouse employees in the US and internationally
- English & Spanish, Four weeks
- Classes accessible any time of day
- · Customized certificate of completion
- \$200 per person (SA discount \$160)

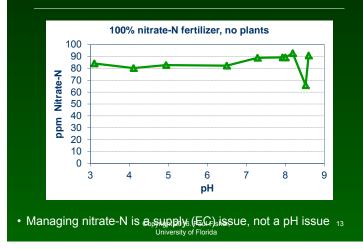

Торіс	Start date	End Date	Level	
Greenhouse 101	30-May	24-Jun	•	
Nutrient Management 1 (Intro)	18-Jul	12-Aug	••	
Nutrient Management 2 (Advanced)	22-Aug	16-Sep	•••	
Disease Management	26-Sep	21-Oct	••	
Weed Management Copyright 201	24-Oct	18-Nov	•• 9	
University of Florida				

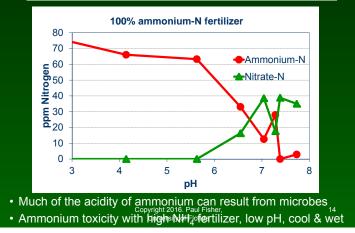
BMP account of Back Pocket Grower

Go to <u>backpocketgrower.org</u> with your browser.

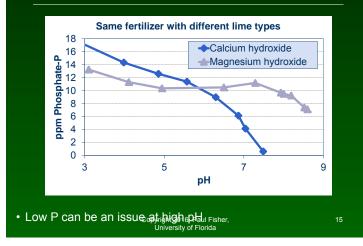
- Looks best on a mobile device.
- Log in (BMP account for 2016: gatorbait)

pH solubility curve: Did you know...

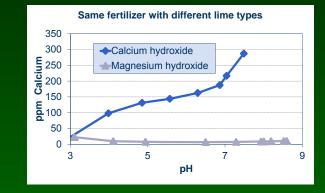

 Based on one mix (peat/bark/sand/vermicultite) and one fertilizer containing STEM


(sulfate micronutrients) and dolomitic lime?

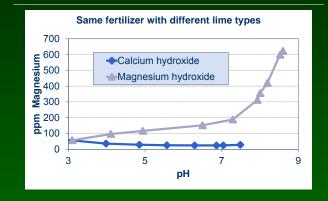
• Why do different nutrients have the reported shape in the curve?


Nitrate is not affected by pH

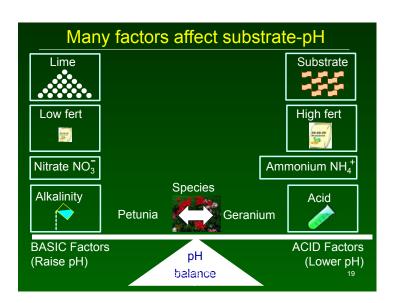
Ammonium tends to be nitrified (turned into nitrate) by bacteria at high pH



Phosphorus reacts with calcium at high pH



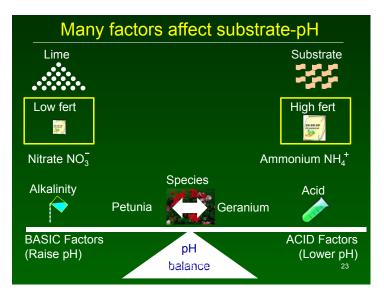
Increasing Calcium at high pH is because of the lime source, not solubility



- Raising pH per se will not increase calcium availability
- Adding calcitic limestone, or grant of the fight of the f

Magnesium has the same trend as Calcium

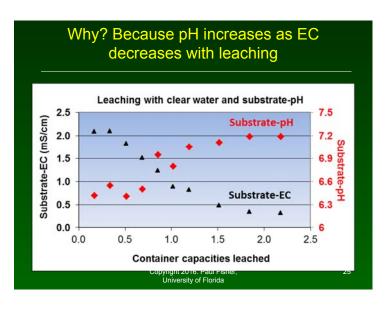
Raising pH per se will not increase magnesium availability
 Adding dolomitic limestore with adding dolomitic limestore with adding dolomitic limestore with adding dolomitic.


pH and EC crop cycle check up

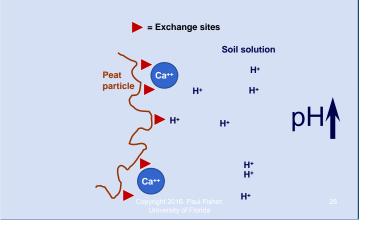
• Plug squeeze each week of crop

pH and EC crop cycle check up

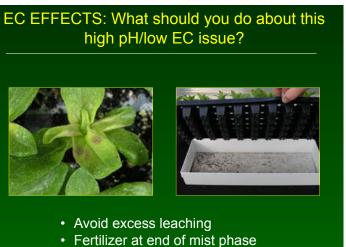
Compartment	H2	H1	H1	H5	H10
Stick/Sow week:	Week 12	Week 11	Week 10	Week 9	Week 8
Crop age:	Week 0	Week 1	Week 2	Week 3	Week 4
pH plug squeeze:	5.3	6.8	5.5	5.8	6.5
EC plug squeeze:	1	0.4	1.5	0.6	0.16
Plant appearance:	Good	Rooted, slight yellowing new leaves	Good tone	Somewhat soft, well rooted	Soft, well rooted, stretched
Ffertilizer type and concentration:		clear water right 2016. Pau Jniversity of Flo		17-5-17 150 ppm N +1.5 ppm Fe	17-5-17 150 ppm N +1.5 ppm Fe



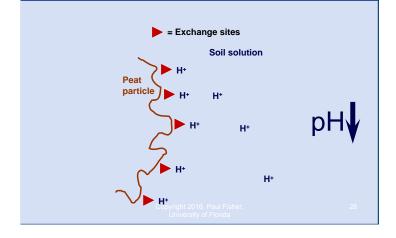
Major pH factors during propagation

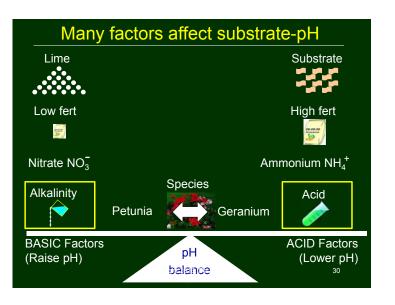

Mist phase	Finishing phase
Lime reaction	Lime residual
Substrate pH & cation exchange capacity (CEC)	Alkalinity
Electrical conductivity (EC)	Nitrogen form & concentration
Water quality	Plant Species

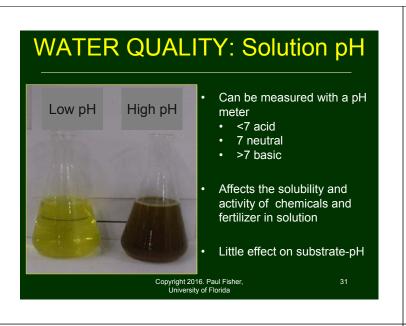
EC EFFECTS: High pH and low salts are common at the end of the mist phase

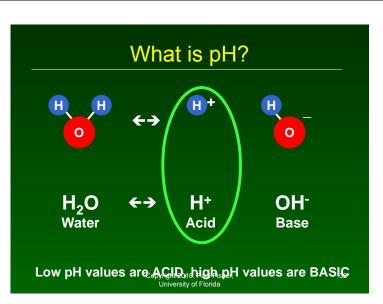


Leaching with clear water washes out salts and raises pH

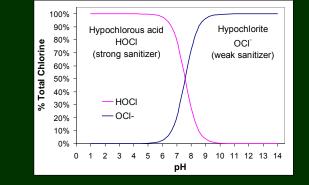

EC: Pre-plant salts (especially Calcium) drop pH


Cation	Substrate-pH	
Control (water)	5.8	
Ammonium	5.5a	
Potassium	5.5a	
Magnesium	5.5a	
Calcium	5.2b	
Copyright 2016. Paul Fisher, 27 University of Florida		

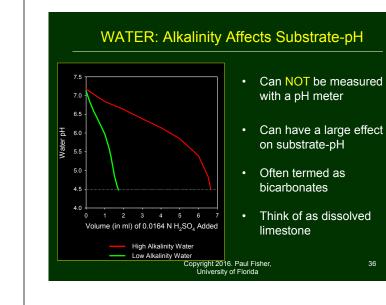



Copyright 2016. Paul Fisher, University of Florida

Adding fertilizer will drop pH



Most agrichemicals are more effective at an acidic pH, for example chlorine



Injecting acid can reduce chlorine cost, increase sanitizing effect, and reduce phytotoxicity filsks

Control the pH of your spray tank for maximum effect of agrichemicals

Pesticide	Optimum pH range
Azadirachtin (Azatin)	3.0 - 7.0
Abamectin (Avid)	6.0 - 7.0
Acephate (Orthene)	5.5 - 6.5
Thiophanate methyl (Cleary's 3336)	6.0 - 7.0
Chlorothalonil (Spectro)	6.0 - 7.0
Fenhexamid (Decree)	5.5 - 6.5
Ancymidol (A-Rest)	5.5 - 6.5
Ethephon (Ethrel, Florel, Pistill)	Less than 5.0

extension.umass.edu/floriculture/fact-sheets/effects-phpesticides-and-growtheregulators Fisher

36

Correct pH and hardness (Ca + Mg) of spray tank solutions

WATER QUALITY

PESTICIDE PERFORMANCE

- Purdue University Extension
 - Impact of water quality on pesticide performance (https://www.extension.purdue. edu/extmedia/ppp/ppp-86.pdf)
 - Use acid or other water conditioners
 - Run a jar test to check complete dissolution

Copyright 2016. Paul Fi University of Florida

water Alka	linity is like di	ssolved limestone	Alkalinity units		
<mark>Vain ions that</mark> Bicarbon Carbona	- - -	Ca, Mg, Na)]	Milliequivalents Alkalinity (mEq/L)	ppm alkalinity (CaCO ₃ , or CCE)	ppm bicarbonate o HCO ₃ -
imestone (similar reaction)			1	50	61
CaCO ₃ + 2H-F	Peat ► H ₂ O + CO	D_2 + Ca-Peat	2	100	122
Nater quality			3	150	183
		150 ppm CaCO ₃) is	4	200	244
ike applying limestone to the substrate with each rrigation. Substrate-pH rises over time.			5	250	305
rrigation. Sub	strate-pH rises of			Copyright 2016, Paul Fisher	-38
Water alka Example plant Irrigated with 1	University of Florid: linity is a mur than water grown in 1 liter cont liter of water per we	a ch stronger base pH ainer		Copyright 2016. Paul Fisher, University of Florida	
Water alka Example plant Irrigated with 1 With a water th	University of Florid: linity is a mur than water grown in 1 liter cont liter of water per we	a ch stronger base pH ainer eek for 15 weeks	 How much to ac University of Ne Sulfuric (adds S Phosphoric (add) 	University of Florida Ikalinity with mir dd? Use online All w Hampshire	neral acid
Water alka Example plant Irrigated with 1 With a water th	University of Florid linity is a muy than water grown in 1 liter cont liter of water per we hat has pH 9 and 200	a ch stronger base pH ainer bek for 15 weeks 0 ppm CaCO ₃ alkalinity Milliequivalents	 How much to ac University of Ne Sulfuric (adds S 	University of Florida Ikalinity with mir dd? Use online All w Hampshire	neral acid kCalc from
Water alka Example plant Irrigated with 1 With a water th pH factor	University of Florid: linity is a mur than water grown in 1 liter cont liter of water per we hat has pH 9 and 200 Amount	a ch stronger base pH ainer bek for 15 weeks 0 ppm CaCO ₃ alkalinity Milliequivalents of base added per pot	 How much to ac University of Ne Sulfuric (adds S Phosphoric (adds N) 	University of Florida Ikalinity with mir dd? Use online All ew Hampshire (5) ds P)	heral acid kCalc from
Water alka Example plant Irrigated with 1	Iniversity of Florid: Iniversity of Florid:	ainer eek for 15 weeks D ppm CaCO ₃ alkalinity Milliequivalents of base added per pot 0.15 base 60 base 60 base	 How much to ac University of Ne Sulfuric (adds S Phosphoric (adds N) Nitric (adds N) Bring water pH 	University of Florida Ikalinity with mir dd? Use online All w Hampshire	heral acid kCalc from

Total Nitrogen (N) 7.84% <u>Ammoniacal</u> Nitrogen 12.16% Nitrate Nitrogen

Potential Acidity: 406 lb. Calcium Carbonate equivalent per ton.

16. Paul Fisher, ty of Florida 20%

 Initrate NO3
 Ammonium NH4*

 Alkalinity
 Petunia

 Petunia
 Geranium

 BASIC Factors (Raise pH)
 PH

 balance
 ACID Factors (Lower pH) 41

FERTILIZER: Potential Acidity or Basicity				
N-P ₂ O ₅ -K ₂ O	(NH₄-N + Urea-N) / Total N	Potential reaction in lb/ton (A=acid, B=base) 1 lb/ton = 0.5 kg/tonne		
21-7-7	100%	A 1560		
20-10-20	40%	A 406		

•	Fertilizers containing more than 20% of N as ammonium tend
	to be acidic

B 0

B 420

45

20%

13%

Ammonium Fertilizers

Nitrification by soil microbes

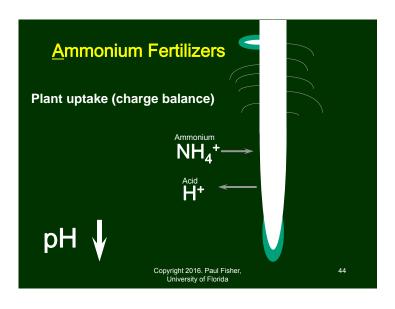
Nitrate

 NO_3

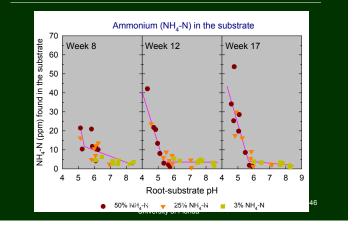
p⊦

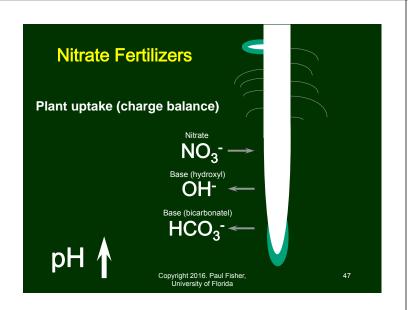
17-5-17

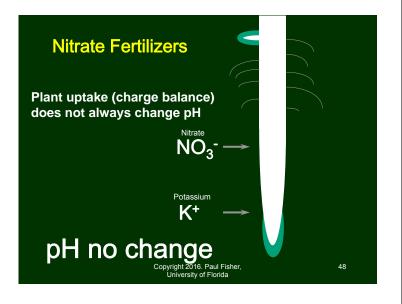
15-0-15

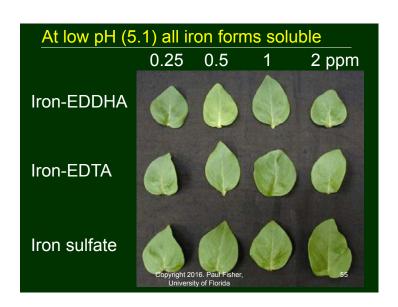

- The Calcium Carbonate Equivalency (CCE) of a fertilizer is its potential to change pH <u>after</u> it is applied, because of root uptake or microbes.
- <u>Can not</u> be measured in the fertilizer solution with a pH meter University of Florida

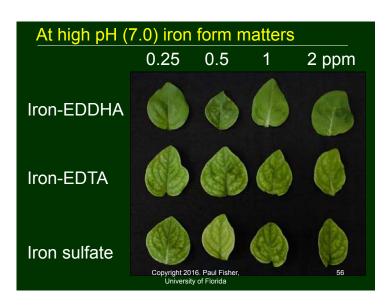
Ammonium

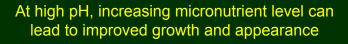

NH₄


H


Copyright 2016. Paul Fisher, University of Florida


Microbes quickly convert ammonium to nitrate (nitrification) when pH is above 6





Mat	tch your ferti	lizer to your	alkalinity	
		Potential reaction	Match to this	pH of the growing media ("Substrate-pH") affects
N-P ₂ O ₅ -K ₂ O	(NH ₄ -N + Urea-N)/ Total N	in lb/ton (A=acid, B=base)	ppm CaCO ₃ of water alkalinity	Potassium
21-7-7	100%	A 1560	300 ppm	Nutrient solubility
20-10-20	40%	A 406	200 ppm	
17-5-17	20%	B 0	100 ppm	Uptake by Plant
15-0-15	13%	B 420	50 ppm	Anganese Manganese
 BUT: lush effect If alk 	growth, ammoniu ctive when plants calinity is greater f needed.	anced with high a um toxicity in winte are small, substra than 150 ppm Ca(^{ht 2016. Paul Fisher,} versity of Florida	er, and not ite wet & cold.	 Plant health too much → toxicity too little → deficiency Copyright 2016. P University of p
	Inorganic	: Fe solubi	lity	Inorganic iron, such as iron sulfate (FeSO ₄), rapidly decreases in solubility as pH increases
pH 4 Highly sc Fe ³⁺ , Fe ²⁺	⊦ Copyrig	ht 2016. Paul Fisher, wersity of Florida	pH 7 lighly insoluble Fe(O믯) ₃	-18 -20 -22 -22 -22 -22 -22 -22 -22 -22 -22
I	Iron solubi	lity and che	lates	1 ppm iron from Iron-EDTA
 Synthet 	tic chelates		· · · · · · · · · · · · · · · · · · ·	
 Most co FeSO₄, (consta) 	ommon fertiliz Fe-EDTA nt) PA, Fe-EDDH	A 20 - 070 -	EDTA EDTA + DTPA HEDTA RATE	Impatiens media-pH 4.4 4.7 5.1 6.0 7.0
	(Norvell _{pyrl} Uni	9901). Pa	6 7 8 9 pH (W.A. Norvell., 1971)	Copyright 2016. Paul Fisher, 54 University of Florida

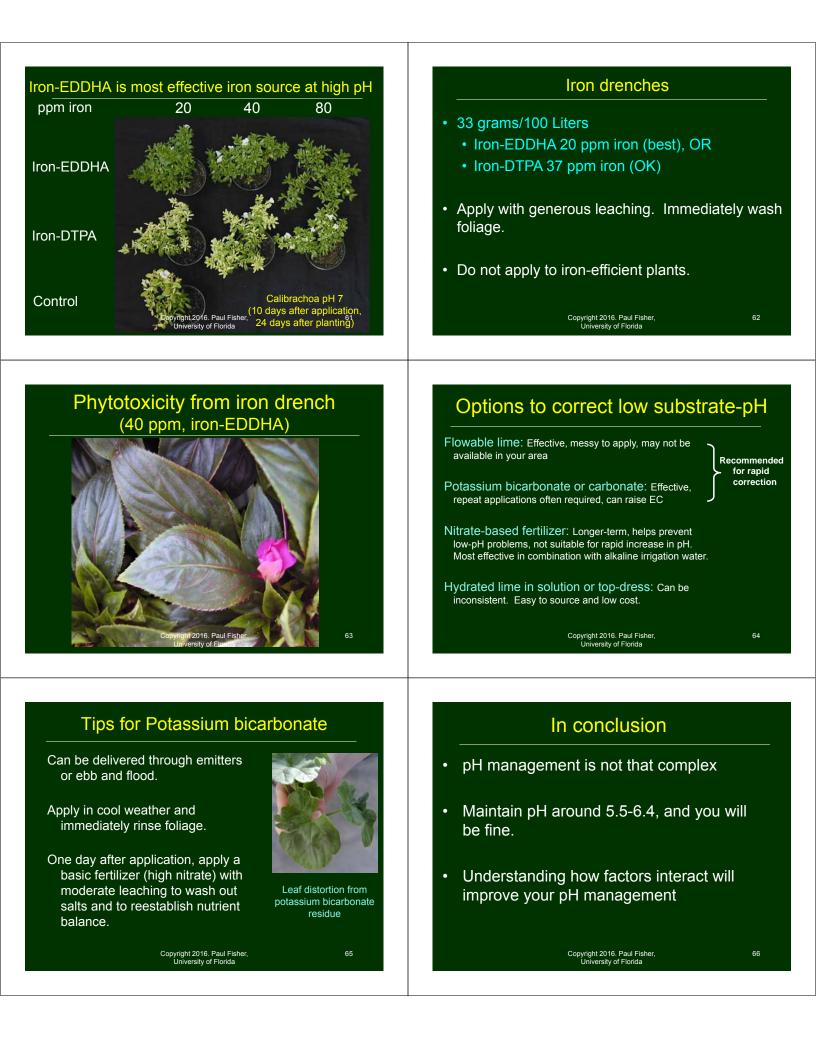
2ppm

ppm iron 0.5ppm 1ppm

(pH 7.0)

 Consider having a separate injector for micronutrients v NPK.
 Control growth with N or Population color with Mg and micros. University of Florida

pH correction to rescue stressed crops



- First check substrate-pH and EC. Check root health.
- Usual disclaimer: Test on small group of plants first.
 Dead leaves won't come back to life.
 Copyright 2016. Paul Fisher, 59
 University of Florida

Options to correct high substrate-pH

- Make sure substrate-EC is not low. Sometimes high pH is simply because the substrate is leached out. If EC is low, add fertilizer.
- 2. Ammonium fertilizer and low water alkalinity. Lower pH over 1-2 weeks. Have ammonium nitrate or ammonium sulfate on hand.
- 3. Correct micronutrient deficiencies. Mask symptoms with an iron drench at 20 ppm iron. Have iron-EDDHA (Sprint 138 or similar) on hand.
- 4. Consider acid drenches in extreme cases. Ferrous iron sulfate drenches at 120 g/100 L rapidly reduce pH but foliar phytotoxicity is likel govyright 2016. Paul Fisher, 60

