A Plant Risk Evaluation Tool for Assessing the Invasive Potential of Ornamental Plants $^{\circ}$

Christiana Conser and Joseph M. DiTomaso University of California, Davis, Department of Plant Sciences, 209 Robbins Hall, MS-4, Davis, California 95616, USA Email: jmditomaso@ucdavis.edu

Weed Risk Assessment (WRA) methods for evaluating invasiveness in plants have evolved rapidly in the last two decades, but none were specifically designed to screen ornamental plants prior to being released into the landscape. For a WRA tool to be accepted as an evaluation tool by the nursery industry, it must be able to accurately predict non-invasiveness without falsely categorized them as invasive. We used a sciencebased and systematic process to develop a new Plant Risk Evaluation (PRE) tool for screening ornamental plants as part of a prevention strategy. The final PRE tool included 19 questions, which was narrowed down from 56 original questions obtained from other existing WRA tools. We evaluated the 56 WRA questions by screening 21 known invasive and 14 known non-invasive ornamental plants. After statistically comparing the predictability of each question and the frequency the question could be answered for both invasive and non-invasive species, we eliminated questions that provided no predictive power, were irrelevant in our current model, or could not be answered reliably at a high enough percentage. We also combined many similar questions. The 19 question PRE tool was further evaluated for accuracy using 57 additional known invasive and 37 known non-invasive ornamental plant species. The resulting evaluation demonstrated that when "needs further evaluation" classifications were not included, the accuracy of the model was 100% for both predicting invasiveness and non-invasiveness. When "needs further evaluation" classifications were included as either false positive or false negative, the model was still 93% accurate in predicting invasiveness and 97% accurate in predicting non-invasiveness, with an overall accuracy of 95%. We conclude that our new PRE tool (Table 1) should provide growers with a method to accurately screen their current stock and potential new introductions. It is our hope that the tool will be accepted for use by the industry as the basis for a nursery certification program.

Table 1. PRE tool questions and their statistical predictability in separating known invasive and non-invasive species. Fisher's Exact Test compared the 57 invasive species against the 37 non-invasive species for each question. Percent of each question (Q) answered is also included. Brackets after question indicate citation were question is included in WRA model. From Conser et al. (2015). PLOS ONE (in press).

#	Question in PRE tool	Fisher's exact test (2-tail)	% Q was answered for invasive	% Q was answered for non-invasive	Point values Yes/No
1	Has the species become naturalized where	P<0.0001		plants	1/0
	it is not native?	1 0.0001	100	100	1/0
2	Is the species noted as being invasive elsewhere in the US or world?	<i>P</i> <0.0001	100	100	2/0
3	Is the species noted as being invasive elsewhere in the US or world in a similar climate?	<i>P</i> <0.0001	100	100	3/0
4	Are other species of the same genus invasive in other areas with a similar climate?	<i>P</i> <0.0001	100	100	1/0

Table 1. Continued.

#	Question in PRE tool	Fisher's	% Q was	% Q was	Point
		exact test	answered	answered for	values
		(2-tail)	for invasive	non-invasive	Yes/No
			plants	plants	
5	Is the species found predominately in a	-	96	100	2/0
	climate that matches those within the				
	region of introduction?				
6	Dominates in areas this species has already	<i>P</i> <0.0001	100	100	1/0
	invaded (displaces natives). Can overtop				
	and/or smother surrounding vegetation.				
7	Is the plant noted as being highly	<i>P</i> <0.0001	79	97	1/0
	flammable and/or promotes fire and/or				
	changes fire regimes?				
8	Is the plant a health risk to humans or	<i>P</i> =0.0001	100	100	1/0
	animals/fish? (Toxic tendencies) Has the				
	species been noted as impacting				
	agricultural/grazing systems?				
9	Does the plant produce impenetrable	<i>P</i> =0.0002	93	100	1/0
	thickets, blocking or slowing movement?				
10	Reproduces vegetatively via root	P=0.0314	98	100	1/0
	sprouts/suckers or stem/trunk				
	sprouts/coppicing.				
11	Plant fragments are capable of producing	<i>P</i> =0.0002	100	100	1/0
	new plants.				
12	Does the plant produce viable seed?	<i>P</i> =0.0001	100	100	1/0
13	Produces copious viable seeds each year	<i>P</i> <0.0001	86	78	1/0
_	(>1000).				
14	Seeds quick to germinate.	<i>P</i> =0.1296	75	68	1/0
15	Short juvenile period. Produces seeds in	<i>P</i> =0.0078	89	54	1/0
-	first 3 years (herbaceous) or produces			-	
	seeds in first 5 years (woody).				
16	Long flowering period with seeds	P=0.2320	86	86	1/0
	produced for more than 3 months each				-, -
	vear				
17	Propagules dispersed by mammals/insects	<i>P</i> <0 0001	100	97	1/0
1,	or birds or via domestic animals	1 0.0001	100		1/0
18	Propagules dispersed by wind or water	<i>P</i> <0 0001	98	97	1/0
19	Propagules dispersed via agriculture	<i>P</i> <0.0001	100	94	1/0
17	contaminated seed farm equipment	1 0.0001	100	<i>,</i> ,	1/0
	vehicles or boats or clothing/shoes				
Av	erage		97	97	Range
				~ •	of 23/0

Literature Cited

Conser, C., Seebacher, L., Fujino, D.W., Reichard, S. and DiTomaso, J.M. 2015. The development of a plant risk evaluation (pre) tool for assessing the invasive potential of ornamental plants. PloS one 10(3). DOI: 10.1371/journal.pone.0121053.