Diurnal Changes of the Net Photosynthetic Rate and Evapotranspiration Rate of Plug Sheets in the Glasshouse

T. Shibuya, Y. Kitaya, and T. Kozai

Faculty of Horticulture, Chiba University, Matsudo, Chiba 271

M. Nakahara

Ibaraki Horticultural Research Institute, Ago, Iwama, Nishi-ibaraki, Ibaraki Pref. 319-02

INTRODUCTION

On-line estimation of evapotranspiration rates (F_w) and net photosynthetic rates (F_c) in situ of plug sheets is important for optimum control of the glasshouse environment and the soil mix moisture for growth of the plugs in a relatively small volume of soil mix.

MATERIALS AND METHODS

Absolute humidities (q₁ and q₂) and CO₂ concentrations (C₁ and C₂) were continuously measured at two heights (z₁ and z₂) above the plug sheets with a hygrometer and an infrared CO₂ analyser, and the weight of a plug sheet (plugs, soil mix, and tray) was continuously measured with an electronic balance. At time t, F_w was estimated based on the difference between the weights of the plug sheet at time t- $\Delta t/2$ and t+ $\Delta t/2$. The diffusion coefficient, K; which is common to F_w and F_c , was then calculated using Equation 1. Finally, F_c was estimated using Equation 2. Using this on-line estimation method, F_w and F_c were estimated for the plug sheets (Table 1) under the environmental conditions shown in Table 2. The z₁ and Z₂ were, respectively, 20 and 50 mm above the plugs in the present experiment.

THE PUBLICATION OF THE PIECE	tion of the plug sheet	the	of	Description	\mathbf{D}	1.	Table
------------------------------	------------------------	-----	----	-------------	--------------	----	--------------

Plant material Lettuce Days after sowing 32 days Leaf area index 6.6 Number of cells 200 cells/sl Planting density 1420 plants	
--	--

Table 2. Description of environmental conditions in the greenhouse.

	Day	Night
Air temperature (C)	20 - 25	10 - 15
Relative humidity (%)	40 - 50	60 - 80
	380 - 400	500 - 550
CO_2 conc. ($\mu\mathrm{mol}$ mol ⁻¹) Wind speed (m s ⁻¹)	0.1 - 0.5	0.1

Figure 1. Time courses of solar radiation and net photosynthetic rate and evapotranspiration rate of plug sheets.

RESULTS AND DISCUSSION

Figure 1 shows changes in solar radiation, F_w and F_c for lettuce plug sheets during a measurement day. Figure 2 shows the effects of solar radiation on F_w and F_c of the plug sheets. The results indicate that F_w and F_c are functions of environmental factors including solar radiation, the growth parameters of the plugs, and the physical properties of the soil mix.

The F_w and F_c of plug sheets in the greenhouse were successfully estimated in situ based on the continuous measurements of absolute humidities, CO₂ concentrations, and weights of plug sheets. The application of this method of environmental control of the glasshouse and irrigation scheduling is underway.

Equation 1.
$$F_w = K \frac{q_2 - q_1}{z_2 - z_1}$$
 (1)

Equation 2.
$$F_c = -K \frac{c_2 - c_1}{z_2 - z_1}$$
 (2)

Figure 2. Effects of solar radiation on net photosynthetic rate and evapotranspiration rate of plug sheets.